Innovation Approach to the Identification of Causal Models in Time Series Analysis

T. Ozaki
Institute of Statistical Mathematics
Innovation Approach
(Wold, Kolmogorov, Wiener, Kalman, Kailath)
(Box-Jenkins, Akaike etc.)

\[x_1, x_2, x_3, \ldots, x_N \]

Causal Model

\[
\begin{align*}
 z_t &= f(z_{t-1}) + \epsilon_t \\
 dz(t)/dt &= f(z(t)) \\
 dz(t) &= f(z(t))dt + dw(t)
\end{align*}
\]

What causes the time-dependency in geophysical time series?

Geophysical Dynamical System
Three topics in time series

1. Nonlinear time series
 Dynamical Systems

2. Non-Gaussian time series
 Dynamical Systems
 & Shot Noise

3. Spatial time series
 Spatial Dynamics
 Innovation Approach
Dynamical System & Time Series Model

Ozaki & Oda (1976)

Restoring force \[W \cdot GM \cdot \sin x \]

\[W \cdot GM \cdot \sin x \approx x \quad : \text{for small } x \]

\[W \cdot GM \cdot \sin x \approx x - \frac{1}{6} x^3 \quad : \text{for large } x \]

\[\ddot{x}(t) + c\dot{x}(t) + \alpha x(t) = n(t) \]

\[\ddot{x}(t) + c\dot{x}(t) + \alpha x(t) + \beta x^3(t) = n(t) \]

\[x_t \quad \text{D.S.} \quad n_t \]
ExpAR Model

\[x_t = \sum_{i=1}^{p} \{ \phi_{i,0} + \phi_{i,1} \exp(-\gamma x_{t-1}^2) \} x_{t-i} + \epsilon_t \]

1. Smaller prediction errors than AR models.

\[\epsilon_t = x_t - \sum_{i=1}^{p} \{ \phi_{i,0} + \phi_{i,1} \exp(-\gamma x_{t-1}^2) \} x_{t-i} \]

\[\epsilon_t = x_t - \sum_{i=1}^{p} \phi_i x_{t-i} \]

2. Mechanical interpretation

Ozaki & Oda (1976)
Natural frequency

\[\ddot{x}(t) + c\dot{x}(t) + \alpha x(t) = n(t) \]

\[x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + n_t \]

\[n(t) \rightarrow x(t) \]

\[n_t \rightarrow x_t \]

\[\rho^2 + c\rho + \alpha = 0 \]

\[\lambda^2 - \phi_1 \lambda - \phi_2 = 0 \]

\[\omega_0 = \frac{1}{2\pi} \sqrt{\alpha - c^2 / 4} \]

\[f_0 = \frac{1}{2\pi} \tan^{-1}\left(\sqrt{-4\phi_2 - \phi_1^2} / \phi_1\right) \]

\[p(f) = \frac{\sigma^2}{\left|1 - \phi_1 e^{-i2\pi f} - \phi_2 e^{-i2\pi f}\right|^2} \]

\[f_0 \]
Idea: Dynamic eigen-values

1. Duffing equation
\[\ddot{x}(t) + c \dot{x}(t) + \alpha x(t) + \beta x^3(t) = n(t) \]

2. van der Pol equation
\[\ddot{x}(t) + c\{x^2(t) - 1\} \dot{x}(t) + \alpha x(t) = n(t) \]

\[\begin{bmatrix} x_t \\ x_{t-1} \end{bmatrix} = \begin{bmatrix} \phi_1(x_{t-1}) & \phi_2(x_{t-1}) \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_{t-1} \\ x_{t-2} \end{bmatrix} + \begin{bmatrix} \varepsilon_t \\ 0 \end{bmatrix} \]

\[\phi_1(x_{t-1}) = \phi_{1,0} + \phi_{1,1} \exp(-\gamma x_{t-1}^2) \]

\[\phi_2(x_{t-1}) = \phi_{2,0} + \phi_{2,1} \exp(-\gamma x_{t-1}^2) \]
Make it non-explosive!

\[x_t = (\phi_{1.0} + \phi_{1.1} x_{t-1}^2) x_{t-1} + \phi_2 x_{t-2} + \epsilon_t \]

Explosive!

Non-explosive!

Make it stay inside for large \(x_{t-1} \)!
ExpAR Singular points

Ozaki(1985)
ExpAR-Chaos

Ozaki (1985)

\[x_t = (0.5 - 0.9 e^{-x^2})x_{t-1} \]

\[x_t = (1 - 0.5 e^{-x^2})x_{t-1} - (0.25 - 0.5 e^{-x^2})x_{t-2} \]

\[x_t = (0.55 - 16.9 e^{-x^2})x_{t-1} - (0.25 - 72.5 e^{-x^2})x_{t-2} \]
ExpAR Models & non-Gaussian distributions

\[x_t = \phi(x_{t-1})x_{t-1} + \varepsilon_t \]

- \(x_0, x_2, x_2 \): Stable singular points
- \(x^+, x_1, x^- \): Unstable singular points

\[x_t = \begin{cases}
0.8x_{t-1} + \varepsilon_t & \text{for } |x_{t-1}| \geq 1 \\
(0.8 + 1.3x_{t-1}^2 - 1.3x_{t-1}^4) + \varepsilon_t & \text{for } |x_{t-1}| \leq 1
\end{cases} \]

Ozaki(1985)
Distribution of ExpAR process

\[x_{t+1} = \{1 - 0.2 \exp(-x_t^2)\} x_t + n_{t+1} \]

\[x_{t+1} = \{0.8 + 0.4 \exp(-x_t^2)\} x_t + n_{t+1} \]

\[x_{t+1} = \{0.8 + 0.2 \exp(-x_t^2)\} x_t + n_{t+1} \]

Gaussian white noise

non-Gaussian

ExpAR
Causal Models in discrete time and continuous time

\[dx(t)/dt = f(x(t)) \]

\[dx(t) = f(x(t))dt + dw(t) \]

\[x_t = \phi(x_{t-1})x_{t-1} \]

\[x_t = \phi(x_{t-1})x_{t-1} + \varepsilon_t \]
Time discretizations of
\[dx = f(x)dt + dw(t) \]

- Euler scheme
- Heun scheme
- Runge-Kutta scheme

Explosive nonlinear AR model!

\[x_{t+\Delta t} = p(x_t)x_t + \sqrt{\Delta t}w_{t+\Delta t} \]

Any non-explosive scheme?
L.L. scheme

\[x_{t+\Delta t} = \exp(K_t \Delta t)x_t + \sqrt{\Delta t}w_{t+\Delta t} \]

\[K_t = \log[1 + J_t^{-1}\{\exp(J_t \Delta t) - 1\}f(x_t) / x_t] \]

\[J_t = \left(\frac{\partial f(x)}{\partial x} \right)_{x=x_t} \]

ii). Ozaki(1985)

iii). Biscay et al.(1996)

Characteristics

1. Simple
2. A-stable
Examples of $\text{Exp}(K_t \Delta_t)$

\[
\dot{x}(t) = f(x) + n(t) \quad x_{t+\Delta} = \exp(K_t \Delta t) x_t + \sqrt{\Delta t} w_{t+\Delta}
\]

\[
x_{t+1} = \{0.8 + 0.2 \exp(-x_t^2)\} x_t + n_{t+1}
\]

\[
x_{t+1} = \{1 - 0.2 \exp(-x_t^2)\} x_t + n_{t+1}
\]
Innovation Approach
(Wold, Kolmogorov, Wiener, Kalman, Kailath)
(Box-Jenkins, Akaike etc.)

\[x_1, x_2, x_3, \ldots, x_N \]

Causal Model

\[z_t = f(z_{t-1}) + \varepsilon_t \]
\[\frac{dz(t)}{dt} = f(z(t)) \]
\[dz(t) = f(z(t)) dt + dw(t) \]

\[\varepsilon_1, \varepsilon_2, \varepsilon_3, \ldots, \varepsilon_N \]
Three types of models

Data

\[x_1, x_2, x_3, \ldots, x_N \]

Dynamic Phenomena

Time Series Models (ExpAR, neural net etc.)

\[x_t = f(x_{t-1}, x_{t-2}, \ldots, x_{t-k}) + \varepsilon_t \]

Dynamical Systems

\[\frac{dz(t)}{dt} = f(z(t)) \]

Stochastic Dynamical Systems

\[dz(t) = f(z(t))dt + dw(t) \]
Applications

1. Non-Gaussian time series and nonlinear dynamics

2. Estimation of $dx = f(x) dt + dw(t)$
 $\frac{dx}{dt} = f(x)$

3. RBF-Neural Net vs ExpAR, RBF-AR modeling

4. Spatial time series modeling
Application-(1)

Non-Gaussian time series
and
nonlinear dynamics

Does non-Gaussian-distributed time series
mean
non-Gaussian prediction errors?

Not Necessarily!
Distribution of ExpAR process

\[n_{t+1} \rightarrow \text{ExpAR} \rightarrow x_{t+1} \]

Gaussian white noise

\[x_{t+1} = \{0.8 + 0.4\exp(-x_t^2)\}x_t + n_{t+1} \]

non-Gaussian

\[x_{t+1} = \{0.8 + 0.2\exp(-x_t^2)\}x_t + n_{t+1} \]
Same Distribution
Different Dynamics

\[W(x) = \frac{x^{\alpha-1} \exp(-x/\beta)}{\Gamma(\alpha) \Gamma(\beta)} \]

1) \[x(t) = \frac{\beta y(t)^2}{2} \]
\[\dot{y}(t) = \frac{\alpha}{2} - \frac{y}{2} + n(t) \]

2) \[x(t) = e^{2\beta y(t)} \]
\[\dot{y}(t) = \frac{\alpha \beta}{\sqrt{2\beta}} - e^{\sqrt{2\beta} y} + n(t) \]

3) \[x(t) = e^{2\beta y(t)} \]
\[\dot{y} + \frac{\alpha \beta}{\sqrt{2\beta}} + e^{\sqrt{2\beta} y} = n(t) \]

\(\alpha = 3, \beta = 1 \)
Mechanism

Gamma-distributed Process (Type II) (Ozaki, 1985, 1992)

\[\frac{dp}{dt} = -\frac{\partial}{\partial x} [(\alpha + 1) \beta x - x^2]p + \frac{1}{2} \frac{\partial^2}{\partial x^2} [2\beta x^2 p] \]

\[p(x) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} e^{-x/\beta} \]

\[x(t) = e^{\sqrt{2}\beta y(t)} \]

\[dy = \left\{ \frac{\alpha\beta}{\sqrt{2}\beta} - e^{\sqrt{2}\beta y} \right\} dt + dw(t) \]

◆ \(x(t) \) is generated from
 i) Gaussian white noise
 ii) Nonlinear Dynamics
 iii) Variable Transformation
This implies the validity of innovation approach

Non-Gaussian time series

\[x_1, x_2, x_3, \ldots, x_N \]

\[y_t = h^{-1}(x_t) \]
\[\varepsilon_t = y_t - f(y_{t-1}) \]

Gaussian white noise

\[\varepsilon_1, \varepsilon_2, \varepsilon_3, \ldots, \varepsilon_N \]
When residuals of your model are non-Gaussian looking, what would you do?

1. Introduce non-Gaussian noise model

2. Improve the Causal Model so that it produces Gaussian residuals
ExpAR model is not sufficient

\[x(t) = \sum_{k=1}^{p} \phi_k(x(t-1))x(t-k) + \varepsilon_t \]

More complicated dynamics, i.e. \(\phi_k(x(t-1)) \)

\[\text{RBF-AR} \]

y-dependent system characteristics, i.e. \(\phi_k(x(t-1), y(t-1)) \)

\[\text{RBF-ARX} \]
RBF-AR & RBF Neural Net

More complicated $\phi_k(x(t-1))$

RBF-AR(p,d,m)

$x(t) = \phi_0(X(t-1)) + \sum_{i=1}^{p} \phi_i(X(t-1))x(t-i) + \epsilon(t)$

$X(t-1) = [x(t-1),...,x(t-d)]'$

$\phi_i(X(t-1)) = c_{i,0} + \sum_{k=1}^{m} c_{i,k} \exp\{-\lambda_k \|X(t-1) - Z_k\|_2^2\}$

RBF- Neural Net (p,d,m)

$x_t = \phi_0(X(t-1)) + \epsilon_t$

$\phi_0(X(t-1)) = c_{0,0} + \sum_{k=1}^{m} c_{0,k} \exp\{-\lambda_k \|X(t-1) - Z_k\|_2^2\}$
Application - (2)

Estimation of

\[\dot{z}(t) = f(z(t)) \]

\[dz(t) = f(z(t))dt + dw(t) \]

Numerical examples

1. Rikitake chaos, (Geophysics)
2. Zetterberg Model (Brain Science)
3. Dynamic Market model (Finance)
How to identify?

\[dz(t) = f(z(t)) dt + dw(t) \]

from

\[x_1, x_2, x_3, \ldots, x_N \]
State Space Formulation

\[x_1, x_2, x_3, \ldots, x_N \]

\[dz = f(z)dt + g(z)dw(t) \]

\[x_t = Hz_t + e_t \]
Frost & Kailath (1971)’s theorem

\[dz = f(z | \theta) dt + g(z | \theta) dw(t) \]

\[x_t = C z_t + \varepsilon_t \]

\[v_k = x_k - E[x_k | x_{k-1}, \ldots, x_1] \]

\[v_k \to v(t) \]

\[\Delta t \to 0 \]

Non-Gaussian time series

\[x_1, x_2, x_3, \ldots, x_N \]

Gaussian white noise

Nonlinear Filter

\[v_1, v_2, v_3, \ldots, v_N \]
Likelihood Calculation

Innovation Approach

\[\nu_k = x_k - \mathbb{E}[x_k \mid x_{k-1}, \ldots, x_1] \]

\[\Delta t \rightarrow 0 \quad \nu_k \rightarrow \nu(t) \]

\[\log p(x_1, \ldots, x_N \mid \theta) = \sum_k \log p(x_k \mid x_{k-1}, \ldots, x_1, \theta) \]

\[= \sum_k \log p(\nu_k \mid x_{k-1}, \ldots, x_1, \theta) \]

\[= \frac{(-1)^N}{2} \sum_{t=1}^{N} \{ \log \sigma_{\nu_t}^2 + \frac{\nu_t^2}{\sigma_{\nu_t}^2} \} \]

How to obtain \(\nu_t \) and \(\sigma_{\nu_t}^2 \)?

\[\nu_k = x_k - \mathbb{E}[x_k \mid x_{k-1}, \ldots, x_1] \]

\[= x_k - \int \xi_k p(\xi_k \mid x_{k-1}, \ldots, x_1) d\xi_k \]

: Gaussian white noise

Frost & Kailath(1971)

Nonlinear Filter
Relations to Jazwinski(1970)’s scheme

\[
\log p(x_1, \ldots, x_N | \theta) = \sum \log p(x_k | x_{k-1}, \ldots, x_1, \theta)
\]

\[
p(x_k | x_{k-1}, \ldots, x_1, \theta) = \int p(x_k | z_k) p(z_k | x_{k-1}, \ldots, x_1, \theta) dz_k
\]

\[
p(z_k | x_{k-1}, \ldots, x_1, \theta) = \int p(z_k | z_{k-1}) p(z_{k-1} | x_{k-1}, \ldots, x_1, \theta) dz_{k-1}
\]

\[
p(z_{k-1} | x_{k-1}, \ldots, x_1, \theta) = \frac{p(x_{k-1} | z_{k-1}) p(z_{k-1} | x_{k-2}, \ldots, x_1, \theta)}{\int p(x_{k-1} | z_{k-1}) p(z_{k-1} | x_{k-2}, \ldots, x_1, \theta) dz_{k-1}}
\]

Innovation Approach

Calculate \(p(x_k | z_k) \) & \(p(z_k | z_{k-1}) \) etc. by Local Gauss model.

\[
z_t = F_{t-1} z_{t-1} + G_{t-1} n_t
\]

\[
x_t = H z_t + e_t
\]

\[
dx / dt = f(z | \theta) + n(t)
\]

\[
x_t = C z_t + e_t
\]
Two Choices for Approximation

1) Local Gauss

\[z_t = F_{t-1} z_{t-1} + G_{t-1} n_t \]
\[x_t = H z_t + e_t \]

\[p(z_k \mid z_{k-1}, \theta) = N(F_{t-1} z_{t-1}, G_{t-1} \Sigma n G_{t-1}') \]
\[p(x_k \mid z_k, \theta) = N(H z_k, \sigma_e^2) \]

2) Local non-Gauss

Use of Fokker-Planck equation.

\[\frac{\partial p}{\partial t} = \sum_i f_i(z) \frac{\partial p}{\partial z_i} + \frac{1}{2} \sum_i \sum_j \sigma_{i,j} \frac{\partial^2 p}{\partial z_i \partial z_j} \]

\[p(z_k \mid z_{k-1}) \]

Computationally 1) is super more efficient than 2)
Advantages of the L.L. Scheme

See

B.L.S. Prakasa Rao (1999)
Statistical Inference for Diffusion Type Processes

H. Schurz (1999)
A Brief Introduction To Numerical Analysis of (Ordinary) Stochastic Differential Equations Without Tears

Essence is

Stability & Efficiency
Numerical examples

1. Rikitake chaos (Geophysics)
2. Zetterberg Model (Brain Science)
3. Dynamic Market model (Finance)
Identification of the chaotic Rikitake model
(Ozaki et al. 2000)

Stochastic Rikitake model

\[d\xi = (-\theta_1 \xi + \xi \eta)dt + \sigma_w^2 dw \]

\[d\eta = (\theta_2 \xi - \theta_1 \eta + \xi \xi)dt \]

\[d\xi = (1 - \xi \eta)dt \]

observation equation

\[z_{tk} = \xi(t_k) + e_{tk} \]

Rikitake (1957), Ito (1982)

<table>
<thead>
<tr>
<th>Chaos</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>
Identification Results

Simulated and estimated states

<table>
<thead>
<tr>
<th></th>
<th>θ_1</th>
<th>θ_2</th>
<th>σ^2_w</th>
<th>$\xi(0)$</th>
<th>$\eta(0)$</th>
<th>$\zeta(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual</td>
<td>5</td>
<td>124.8</td>
<td>0.0025</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>estimated</td>
<td>4.95</td>
<td>123.1</td>
<td>0.0060</td>
<td>1.002</td>
<td>0.087</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Innovation of the estimated model

P > 0.95
Three types of parameters

1. \(\theta_1, \theta_2 \)

2. \(\sigma_w^2, \sigma_e^2 \)

3. \(\xi(0), \eta(0), \zeta(0) \)

Stochastic Rikitake model

\[
\begin{align*}
 d\xi &= (-\theta_1 \xi + \xi \eta)dt + \sigma_w^2 dw \\
 d\eta &= (\theta_2 \xi - \theta_1 \eta + \xi \xi)dt \\
 d\zeta &= (1 - \xi \eta)dt
\end{align*}
\]

Observation equation

\[z_{tk} = \xi(t_k) + e_{tk} \]

Structured-parameter optimization

for

M.L.E. method

Peng & Ozaki (2001)
Initial values & Estimated States

\[\theta_1, \theta_2 \quad \sigma_w^2, \sigma_e^2 \] : optimized

\[\xi(0), \eta(0), \zeta(0) \] : not optimized

\[\theta_1, \theta_2 \quad \sigma_w^2, \sigma_e^2 \] : optimized

\[\xi(0), \eta(0), \zeta(0) \] : optimized
Initial values & Innovations

\[\theta_1, \theta_2 \quad \sigma^2_w, \sigma^2_e \quad \text{: optimized} \]
\[\xi(0), \eta(0), \zeta(0) \quad \text{: not optimized} \]

\[\theta_1, \theta_2 \quad \sigma^2_w, \sigma^2_e \quad \text{: optimized} \]
\[\xi(0), \eta(0), \zeta(0) \quad \text{: optimized} \]
Reality in Data Analysis

1. Zero prediction errors are not possible to attain even with nonlinear causal (chaos) models.

2. Residuals of ARIMA models are usually almost Gaussian, but not always.

- Time - inhomogeneous residuals
- Gaussian white residuals + a few outliers
- Generally distributed residuals are rare! (We don’t see bi-modally distributed residuals)
A question is whether it is possible to find a perfect deterministic model for the data x_1, x_2, \ldots, x_N.

(Stochastic Model) $\varepsilon_1, \varepsilon_2, \varepsilon_3, \ldots, \varepsilon_N$

(Deterministic Model) $0, 0, 0, \ldots, 0$
Application - (4)

Spatial time series modeling
Example: Data assimilation in meteorology

States on the lattice points \((i,j)\)

\[
x^{(i,j)}_t \quad (t = 1, 2, \ldots, n)
\]

Estimation

\[p = \text{dim}(y_t) \ll \text{dim}(x_t) = N \times N\]

Observations

\[
y_t = H\{x^{(1,1)}_t, \ldots, x^{(N,N)}_t\} + \varepsilon_t \quad (t = 1, 2, \ldots, n)
\]
Mutual understanding: on the way

♦ Variational method (4D-Var)

\[
I(x_0) = \frac{1}{2} \sum_{i=0}^{n} \{y_i - H(x_{i|0})\}^\prime R_i^{-1} \{y_i - H(x_{i|0})\} \\
+ \frac{1}{2} \{x_0 - x_{0|0}\}^\prime B_0^{-1} \{x_0 - x_{0|0}\}
\]

Rabier et al (1993)

Ide & Ghil (1997)

♦ Closed system
♦ Perfect model with Observation errors

♦ Penalized Least Squares method

\[
I(x_0) = \frac{1}{2} \sum_{i=1}^{n} \{y_i - H(x_{i|i})\}^\prime R_i^{-1} \{y_i - H(x_{i|i})\} \\
+ \frac{1}{2} \{x_0 - x_{0|0}\}^\prime V_0^{-1} \{x_0 - x_{0|0}\} \\
+ \sum_{i=1}^{n} \{x_i - x_{i|i-1}\}^\prime Q_i^{-1} \{x_i - x_{i|i-1}\}
\]

♦ Open system
♦ Model errors as well as Observation errors
Similar principles

- Variational method (4D-Var)
 - Closed system
 - Perfect model with observation errors

- Penalized Least Squares method
 - Open system
 - Model errors as well as observation errors

- Sequential method (Extended Kalman Filter → MLE)
 - Open system
 - Model errors as well as observation errors
 (similar to P.L.S. but not the same!)
Hidden approximations behind perfect-model assumptions

- Infinite dimensional state \rightarrow Finite dimension
 $(\rightarrow$ Model error$)$
- Open universe \rightarrow Closed system
 $(\rightarrow$ Model error$)$
- Nonlinear dynamics \rightarrow Numerical Approximation
 $(\rightarrow$ Model error$)$
Experience in Chaos
(Smoothing the trajectory)

Penalized L.S. method didn’t work!

\[I(x_0) = \frac{1}{2} \sum_{i=1}^{n} \{ y_i - H(x_{i|i}) \}^\prime R_i^{-1} \{ y_i - H(x_{i|i}) \} + \frac{1}{2} \{ x_0 - x_{0|0} \}^\prime V_0^{-1} \{ x_0 - x_{0|0} \} + \sum_{i=1}^{n} \{ x_i - x_{i|i-1} \}^\prime Q_i^{-1} \{ x_i - x_{i|i-1} \} \]

Farmer & Sidorowich(1991)
Kostelich & York(1988)

Many local minimums!
Non-penalized L.S. method (4D-VAR) is even worse!

Prediction errors

\[v_k = x_k - E[x_k | x_{k-1}, \ldots, x_1] \]

with \[\sigma_n^2 = 0 \]
Prediction errors with assumptions

\[\sigma_n^2 = 0.1 \times 10^{-7} \]

\[\sigma_n^2 = 0.1 \times 10^{-6} \]

\[\sigma_n^2 = 0.1 \times 10^{-4} \]
M.L.E. with L.L. Filtering

Maximum Likelihood Method works
for Lorenz chaos & Rikitake chaos

\[(-2) \log p(y_1, y_2, \ldots, y_N) = \sum_{t=1}^{N} \left[\log \sigma_{t|t-1}^2 + \frac{(y_t - H(x_{t|t-1}))^2}{\sigma_{t|t-1}^2} \right] \]

1. Optimization
2. Objective function
3. Filtering

Remained problem:
Computational burden from huge dimensional states

Innovation Approach
Innovation Approach to Spatial Time Series:

Numerical Example

fMRI data

147,456 - dimensional time series
fMRI Machine
fMRI data

Sampling frequency: 3 sec (3T)
Resolution: 64 × 64 × 36 (slices)

147,456 dimensional time series
147,456-dim AR(1) is impossible?
(147,456 × 147,456 transition matrix ?)
Innovations in spatial dynamics

\[\varepsilon_t^{(i,j)}(x) = x_t^{(i,j)} - E[x_t^{(i,j)} | x_{t-1}^{(*,*)}, x_{t-2}^{(*,*)}, \ldots] \]

\[\varepsilon_t^{(i,j)}(x | s) = x_t^{(i,j)} - E[x_t^{(i,j)} | x_{t-1}^{(*,*)}, x_{t-2}^{(*,*)}, \ldots, s_{t-1}^{(*,*)}, s_{t-2}^{(*,*)}, \ldots] \]

Why not start from the simplest linear model.
Space-Temporal Model with stimulus

Simplest example:

\[x_t^{(i,j)} = \mu^{(i,j)} + \alpha^{(i,j)} x_{t-1}^{(i,j)} + \beta^{(i,j)} \xi_{t-1} + \gamma^{(i,j)} s_{t-1} + \varepsilon_t^{(i,j)} \]

\[\mu^{(i,j)}, \alpha^{(i,j)}, \beta^{(i,j)}, \gamma^{(i,j)}, \sigma^{(i,j)} \]

Solve a linear equation for each space point (i,j).

\[s_{t-\tau} \quad : \text{Stimulus} \]

\[\xi_{t-1} \quad : \text{Neighbour vector} \]

\[\beta^{(i,j)} \quad : \text{Neighbour coefficient} \]
Estimated Model tells you something

This is a special type of \(N_p \)dim ARX model
\(N_p = 64 \times 64 \times 36 = 147,456 \)

\[
X_t = \hat{M} + \sum_{k=1}^{r_1} \hat{A}_k X_{t-k} + \sum_{k=1}^{r_3} \hat{\Gamma}_k S_{t-k} + E_t
\]
Looking through

1. Mean field map \(\hat{\mu}^{(i,j)} \)

2. Cross-spectrum field map

3. Causality field map

4. Impulse response function

5. Innovation field map \(\hat{\varepsilon}_t^{(i,j)} \)

6. Response field map \(\sum_{k=1}^{r_2} \hat{\gamma}_k^{(i,j)} S_{t-k} \)

7. Innovation + Response field map

\[
X_t = \hat{\mu} + \sum_{k=1}^{r_1} \hat{A}_k X_{t-k} + \sum_{k=1}^{r_2} \hat{\Gamma}_k S_{t-k} + \hat{\varepsilon}_t
\]

\[
\hat{p}(f) = \hat{A}(f) \hat{\Sigma} \hat{A}(f)
\]

\[
\hat{p}^{(n_{ij},n_{ij})}(f) = \sum_{k=1}^{N_p} | \hat{a}^{(n_{ij},k)}(f) |^2 \hat{\sigma}_k^2
\]

\[
h(i,j,\tau) \quad \& \quad x_t^{(i,j)} = \sum_{\tau} \sum_{i} \sum_{j} h(i,j,\tau) \varepsilon_{t-\tau}^{(i,j)}
\]
fMRI data 3T

Task: Visual stimulus by black and white shuffled check board

Sampling frequency: 3s
Resolution: 64 × 64 × 36 (slices)

(=147,456)
Time Series plots of special line (j=25) of the slice k=12.
\(x_t^{(i,j)} \)

\[\sum_{k=\tau_1}^{\tau_2} \gamma_k^{(i,j)} S_{t-k} \]

\[\varepsilon_t^{(i,j)} + \sum_{k=\tau_1}^{\tau_2} \gamma_k^{(i,j)} S_{t-k} \]
\[x_t^{(i,j)} \]

\[\sum_{k=\tau_1}^{\tau_2} \gamma_k^{(i,j)} S_{t-k} \]

\[\epsilon_t^{(i,j)} + \sum_{k=\tau_1}^{\tau_2} \gamma_k^{(i,j)} S_{t-k} \]

\[i=41 \sim 45 \]

\[k=12 \]

\[j=25 \]
\(i=46 \sim 50 \)

\[x_t^{(i,j)} \]

\[\sum_{k=\tau_1}^{\tau_2} \gamma_k^{(i,j)} S_{t-k} \]

\[e_t^{(i,j)} + \sum_{\tau_1}^{\tau_2} \gamma_k^{(i,j)} S_{t-k} \]
Innovation Maps

\[
e_{(i,j)}^{t} + \sum_{\tau_{1}}^{\tau_{2}} \gamma_{k}(i,j) S_{t-k}
\]

\[
\sum_{k=\tau_{1}}^{\tau_{2}} \gamma_{k}(i,j) S_{t-k}
\]

\[
x_{t}(i,j)
\]
Spatial Impulse Response
Spatial ARX Simulation-1

\[x_t^{(i,j)} = 0.7x_t^{(i,j)} + 0.1x_t^{(i+1,j)} + 0.1x_t^{(i-1,j)} + 0.1x_t^{(i,j+1)} + 0.1x_t^{(i,j-1)} + \varepsilon_t^{(i,j)} \]
Innovation Approach could be useful in Space-Time

\[x_{1}^{(i,j)}, x_{2}^{(i,j)}, x_{3}^{(i,j)}, \ldots, x_{N}^{(i,j)} \]

\[\varepsilon_{1}^{(i,j)}, \varepsilon_{2}^{(i,j)}, \varepsilon_{3}^{(i,j)}, \ldots, \varepsilon_{N}^{(i,j)} \]

- Time Series Models
- Dynamical Systems
- Stochastic Dynamical Systems
Thank you
(ozaki@ism.ac.jp)